
Hybrid Modelling/ Machine learning for soft-sensing
and process modelling

Alexandre José Gomes da Silva
alexandre.g.da.silva@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2018

Abstract

It is common to have systems within processes that are poorly understood and cannot be easily represented by
first-principle models. A prototype tool was developed, in Python, aiming to soft-sense parameters belonging to these
systems. This tool allows for the creation of predictive models using input and output data. These models were
subsequently integrated in dynamic simulations in gPROMS R©.

For this purpose, a partial least squares regression (PLSR) algorithm was implemented. This algorithm has the
particularity of needing the models dimensions to be chosen prior to creating the model, therefore a 10-fold cross-
validation (CV) method was implemented along with other tools to help judge the model’s quality. The Distance to the
model and Hotelling’s T2 statistical tests were also implemented for outlier detection.

In order to study the models behaviour when integrated in a dynamic simulation, data from two different cases
studies, a granulation and a compression case, was used. Furthermore, data from a solid oxide fuel cell case was
used to study the creation of a model capable of predicting several response variables. These cases led to the
implementation of a 2nd order polynomial transformation and a reciprocal transformation.

The simulations showed the high importance of choosing training data that covers the operative conditions of the
simulation. Otherwise the results obtained will be unreliable since the model is being used to predict data outside the
range it was meant to be used in.

Keywords: Hybrid Modelling, Partial Least Squares Regression, Soft-sensing, Distance to the model, Hotelling’s T2

1. Introduction
In the process industry, a large number of sensors are com-

monly implemented with the purpose of delivering data for pro-
cess monitoring and control. Approximately two decades ago,
researchers started to use the large amounts of data being
measured and stored by them to build predictive models. These
models are referred to as soft-sensors.[1]

Two main classes of soft-sensors exist: model-driven and
data-driven. Model-driven soft-sensors, also called white-box
models, are based on first-principle models and therefore have
full phenomenological knowledge regarding the process back-
ground. Data-driven soft-sensors, also called black-box models,
are based on the data measured from a process and therefore
the model itself has no knowledge of the process. Given that
model-driven sensors are primarily used for planning and de-
velopment of process plants and inferential control, the focus of
soft-sensing is usually concentrated in data-driven models.[1]

As a consequence of being based on data measured directly
from the process, data-driven sensors describe the real process
conditions. Their usefulness is derived from the fact that they
can build multivariate features related to different process vari-
ables that have a direct influence in the process’s output quality.
Several modelling approaches are used for these models, being
the PLSR one of the most popular in chemical engineering and
chemometrics, among others.[1]

The inclusion of a data-driven soft sensor in dynamic sim-
ulations implies its use alongside first-principle models. This
combination of white and black box models constitutes another
type of modelling strategy: grey-box modelling, also referred to
as hybrid modelling.[2]

These types of models are specially appealing when a pro-
cess is non-linear. When that is the case, hybrid modelling

combines white and black box modelling, compensating for the
shortcomings of the standalone implementation of these strate-
gies. As a consequence, hybrid modes offers a higher degree of
flexibility, enabling them to accomplish the modelling task based
on precision, reliability and relevancy of the process knowledge
and process data.[2]

Motivated by the fact that many systems integrated in chem-
ical processes are poorly understood or too complicated to
model trough first-principle models, a tool able to create pre-
dictive models from process data was developed, in Python.
This was accomplished with a focus on model quality, which led
to the implementation of several methods to judge the predic-
tive capability of the model, and on model validity, which was
assessed trough statistical tests. The model generated by this
tool was then integrated into dynamic simulations, for the pur-
pose of soft-sensing parameters belonging to the systems in
question.

2. Background
Machine learning has been introduced steadily into the pro-

cess industry in recent years, composing the main type of ap-
proach used for modelling soft-sensors. Even tough many dif-
ferent machine algorithms are available, for this work, the PLSR
machine learning algorithm was deemed the most suitable.[1]

2.1. Machine Learning in industrial processes
Machine learning refers to a set of tools for understanding

data, more specifically, it is an algorithm based method that al-
lows the estimation of an unknown dependency between a sys-
tems inputs and outputs from the available data. Four types
of machine learning algorithm exist: supervised learning, unsu-
pervised learning, semi-supervised learning and reinforcement

1

learning. However, in the process industry, most problems call
for either supervised or unsupervised learning, being that this
work focus solely on supervised learning. Furthermore, most
problems in this industry are regression problems i.e. problems
with a quantitative response.[3][4][5]

Supervised learning consists on fitting a model that relates
the output variables (response variables) to the input variables
(predictor variables), using datasets with responses associated
to each observation of the predictors. It either aims to accu-
rately predict the response for future observations (prediction)
or to better understand the relationship between the inputs and
outputs (inference).[3]

Machine learning is widely used in different areas of the pro-
cess industry. It has helped with the increasing complexity and
high dimensionality of the manufacturing systems. This ten-
dency leads to the prediction of an expanded use of machine
learning in this field, specially trough hybrid approaches[6]. For
sensor fault detection, machine learning is also applied. It is
used for the identification of the sensor’s or process’s faults ef-
fectively, also allowing to find which particular sensor or set of
sensor is responsible for the fault.[1]

2.2. Partial Least Squares Regression
In multivariate problems it is common to use the widely un-

derstood multiple linear regression (MLR), a method applicable
when there are few input variables, they are not significantly
collinear and there is some understanding of how they relate
with the output variable. However, in most of the problems tack-
led through machine learning, in the field of engineering, it is
highly common to come across a problem with a high number
of input variables, which present a higher degree of collinear-
ity. This fact renders MLR inefficient and thus the need to use
another type of regression arises. The PLSR presents a useful
alternative, especially when there is the need to obtain a pre-
dictive model for the output variable(s).[7] [8]

The PLSR relates the input variables (x) with the output vari-
ables (y) and it will create a multivariate linear model with pre-
dictive capabilities. When modelling through PLSR, it is as-
sumed that the process in question is influenced by just a few
underlying variables - latent variables (LV). It is not known how
many of them there are, being one of the aims of PLSR analysis
to estimate their number. The X and Y variables are hypothe-
sized to be realizations of these latent variables and, therefore,
are not assumed to be independent. The LV assumptions ap-
proximately correspond to the application of microscopic con-
cepts, making PLSR suitable for the modelling of chemical data.
Whenever the number of LV’s equals the number of input vari-
ables, the latter is independent and thus PLSR yields the same
results as MLR.[8]

2.2.1 Partial Least Squares Regression Algo-
rithm - PLS1 and PLS2

Even though there are several types of PLSR algorithms ,
only the PLS1 and PLS2 algorithms are implemented in the
scikit-learn package. They differ from each other in the sense
that PLS1 is particular case of PLS2, applied when there is only
one response variable.

The algorithm starts with the treatment of the input data ma-
trices, – X of dimensions (N,K) and Y of dimensions (N,M) – in
order to make their distributions be fairly symmetrical. They are
centred, through the subtraction of the mean of each variable to
their respective column in the input matrix and, optionally, they
can also be scaled by diving each variable by its standard de-
viation. Once the treatment has been applied, an iterative loop
begins, the outer loop, whose first step begins with another loop,
the inner loop.

In the inner loop the weight matrices W of dimensions (K,
A) and C of dimensions (M, A) for X and Y respectively are
calculated. Said calculation is accomplished trough equations
(1) and (2). In both equations, it is possible to observe that

X(r) and Y(r) are used. This happens because they represent
the residual matrix of the iteration number r of the outer loop,
except for the first iteration, where they represent the treated
input data matrices. The subscript i represents the number of
the iteration of the inner loop.[8][9]

Wi =
X(r)TUi−1

UT
i−1Ui−1

(U = Y (r) for i = 1) (1)

Ci =
Y (r)TTi−1

TT
i−1Ti−1

(T = X(r) for i = 1) (2)

Upon being calculated, the X weight matrix (W) is normalized
trough equation (3).

Wi =
Wi√
WT

i Wi

(3)

After normalization, the X-score – T (N, A) – and Y-score – U
(M, A) – matrices will be calculated trough equations (4) and (5).
These matrices will be used to calculate the weight matrices of
the next iteration within the inner loop.

Ti = X(r)Wi (4)

Ui = Y (r)Ci (5)

At the end of each iteration the constrain in (6) is tested. The
inner loop will run as long as this condition is not met.[9]

(Wi −Wi−1)T (Wi −Wi−1) < 10−6 (6)

Once the inner loop is finished, the scores will once again
be calculated trough equations (4) and (5), using the weights
obtained at the end of the inner loop. These matrices are of
particular importance since they act as estimators of X and Y.
With them, it is also possible to calculate the loading matrices:
P (K, A) for X and Q (N, A) for Y.[10][8]

P =
X(r)TT

TTT
(7)

Q =
T (r)TU

U(r)U
(8)

At this point, it is possible to make estimations of the X and
Y data through the calculated matrices, as shown in equations
(9) and (10).

X̂ = TPT (9)
Ŷ = UQT (10)

This estimations will be subtracted to the X and Y matrices,
in order to get the residual matrix for the next iteration, after
which the algorithm will go back to the inner loop step. There
will be A iterations, being A the number of components of the
model i.e. the number of latent variables (model dimensions).
Once the algorithm is finished, it is possible to get predictions
of Y through X, since the X-scores have the property of being
predictors of Y. This will be done through equation number (12),
where W* represents a transformed weight matrix and a centred
and scaled (possibly) response matrix is obtained - Y*.[8]

W ∗ =
W

PTW
(11)

Y ∗ = XW ∗CT ⇔ Y ∗ = XB∗ (12)
Through the equation shown above, it is possible to get the

coefficient matrix B*, however, it cannot be applied directly to an

2

X matrix without previous treatment of the latter. Therefore, this
matrix needs to be treated, using the standard deviation (std) of
both the input and output matrices, in order to be used with an
untreated X matrix.

B = B∗ STD(Y)

STD(X)
(13)

Once treated, prediction of new values will be accomplished
though equation (14). It is worth noting that, in the equation
displayed bellow, both means refer to the mean of the training
matrices.

Y = XB + (Ymean −XmeanB) (14)
PLS2 has the disadvantage that, by modelling all the re-

sponse variables at the same time, the number of components
of the model will be the best compromise between the optimal
value for each variable as obtained by CV. PLS1 presents the
advantage of being able to eliminate some of the effects of in-
teractions between response variables, which, in some cases,
is a cause of nonlinearity.[11]

Regarding the other partial least squares (PLS) algorithms,
PLS1 and PLS2 differ from them in the step referring to the up-
date of the residual matrix after each iteration. The advantage
of this method of updating the residual matrix is more evident in
cases with just one response variable since, when using other
algorithms, it is easier to get a null residual matrix, terminating
the algorithm before the loop has gone through A iterations. [10]

2.2.2 Choosing the Model’s Dimensions

The model’s dimensions will determine the number of itera-
tions, therefore it is important to determine this parameter cor-
rectly, avoiding overfitting i.e. getting a well fitted model with
very little to none predictive power. This will be done by ap-
plying CV to models with different numbers of components and
then choosing the one with the higher score.[8] [3]

Cross-validation consists on splitting the data into validation
and training data. Then, the model is fitted to the training data
and predictions are made with the validation data. The predic-
tions are then compared with the actual values and the over-
all prediction error sum of squares (PRESS) (equation (15))
is calculated, estimating the predictive capacity of the model.
The higher the prediction capability of the model, the lower the
PRESS will be.

PRESS =
N∑
i

(Ypredicted − Ymeasured)2 (15)

Although this parameter is a good indicator of the overall
prediction capability of the model, in this work, at the end of
the cross-validation process, the mean squared error of cross-
validation (MSE CV) - the PRESS score divided by the number
of samples - will be the score displayed, making it easier to com-
pare models with different number of samples in the input data
matrix. Additionally, the goodness of prediction (Q2) - equation
(16) - will also be computed and displayed. This scoring method
yields a score between 0 and 1 (it is possible for the score to be
negative, however said case will correspond to a model which
cannot predict any data correctly), that always presents itself as
being equal or lower than the goodness of fit (R2), being that a
model is good at predicting whenever it scores above 0.5. This
scoring method allows for a better and easier interpretation of
the model’s quality, especially in multiple output cases, since
the order of magnitude of the outputs will vary.[12]

Q2 = 1−
PRESS∑N
i (yi − ȳ)2

= 1−
PRESS

TSS
(16)

As a result of using centred and scaled matrices when ap-
plying cross-validation, the calculation of total sum of squares
(TSS) will be simplified, since this parameter will correspond to
the number of samples in the matrix.

The two most widely used types of cross validation are
the k-fold cross validation and leave one out cross-validation

(LOOCV). In k-fold cross validation, the data is randomly divided
into k groups (folds) of approximately equal size. The model is
then fitted on k-1 groups and predictions are made using the
remaining group, which will act as a validation set. A score is
calculated and the procedure will be repeated k times, so that
each group will act as a validation set once[3]. In LOOCV, the
procedure is similar to the one in k-fold CV, being that k will be
equal to the number of samples, so that each sample acts as a
validation group once. At first glance, this type of CV poses it-
self as the most thorough, however this type of cross-validation
tends to choose the model of excessive size instead of the opti-
mal model.[3] [13] [8]

In order to choose the number of components that yields the
best model, a 10-fold CV will be applied to several models, each
of them fitted using a different number of components. This
parameter must be an integer number greater or equal to one
and lower or equal to the overall number of x variables. Once
CV has been applied to the different sized models, the MSE CV
scores will be compared and the one that has the lowest one
will be the chosen model.

2.2.3 Statistics

Since the point of the model is to predict new values of Y,
there is a need to apply statistical tests on the input data, so
that some information regarding the applicability of the model
can be obtained. In this work, two different tests will be applied:
the distance to the model of an observation (DmodX) and the
Hotelling’s T2.

PLSR is also a projection method, therefore it creates a pro-
jection of the X-matrix (interpreted by the X scores) creating a
plane with the same dimensions as the model. The distance to
the model test, a moderate outlier detection tool, calculates the
distance of a sample point to this plane through equation (17). If
the distance to the model is being calculated for a sample point
of the training data, equation (17) should be multiplied by a dis-
tance to model correction factor (ν), obtained trough equation
(18). This factor takes into account the fact that the DmodX is
expected to be smaller when calculated for an observation that
is part of the training data.

DmodX =

√√√√√
∑

k eik
K−A∑
i

∑
k eik

(N−A−A0)(K−A)

(17)

ν =
N

N −A0 −A
(18)

As it will be discussed further in this work, the equation for
the correction factor (equation (18)) presented in the SIMCA R©

15 User guide [14] does not yield satisfactory results and there-
fore was considered to be wrong. As such, for reasons ex-
plained in section 4.3.1, equation (19) was used for this param-
eter.

ν =
N

N − 0.542 ·A+ 0.487
(19)

As shown above, the equation for DmodX is dependent on
the number of X variables (K), number of samples in a dataset
(N) and number of components of PLS model, models dimen-
sions (A). The A0 parameter takes a value of 1 if the matrix has
been centred, and 0 otherwise. The eik parameter represents
the residual for the variable k in the ith sample. It is calculated
through the subtraction of the data matrix being evaluated (af-
ter centring and/or scaling) with the estimation made with de
X-score and loading matrices.

e11 · · · e1k

...
. . .

...
ei1 · · · eik

 = X − TPT (20)

When calculating the distance to the model of a prediction
set there is the need to calculate a new X-score matrix, since

3

this is the only non-model specific matrix (equation (21)). This
can be easily achieved through the rotation matrix, W* (equation
(11)) .[8]

Tprediction = Xprediction
W

PTW

⇔ Tprediction = XpredictionW
∗

(21)

For each sample, the distance to the model will be calculated
and compared with the critical distance. Any sample with a dis-
tance higher than the critical one, will represent a possible out-
lier and a sample with a distance higher than twice the critical
distance is considered an outlier. This parameter is represented
by the squared root of an inverse cumulative F-distribution func-
tion for a significance level of 5%. The number of degrees of
freedom of the denominator of said F-distribution amount to the
number of degrees of freedom of the model.[14] [15]

DOFmodel =
√

(N −Ao −A)(K −A) (22)

The degrees of freedom (dof) of the numerator of the F-
distribution in question match with the number of degrees of
freedom of the observations in the training set. The way to cal-
culate them will be dependent on the value of the dof of the
model, as such:

DOFobservations =
M +

√
K −DOFmodel −A

ν

K > DOFmodel

(23)

DOFobservation =
M −A
ν

K < DOFmodel

(24)

When calculating degrees of freedom, the M parameter rep-
resents the minimum value between K, the DOFmodel and
100.[14]

Although a data point may be close to the model plane, it is
in the centre of the model where has more significance. There-
fore, the distance to the centre of the model of the projection
of an observation in the model plane will be calculated through
Hotelling’s T2. [14]

T 2
i =

∑
K

(tik − t̄k)2

s2tk
(25)

This test is dependent on the X-score value for observation
i and number of components k (tik), as well as the mean (t̄k)
and standard deviation (stk) for the X-score vector with k num-
ber of components i.e. the mean and standard deviation of
the X-score matrix’s column number k.The critical distance for
Hotelling’s T2, is calculated through a cumulative F-distribution
with a 5% significance level. The dof of the numerator of this dis-
tribution match the number of components, while the dof of the
denominator correspond to the subtraction between the number
of observations and the model’s dimensions. This test allows for
the exposure of outliers through the following constrain:

T 2
i >

A(N − 1)

N −A
Fcritical(p) (26)

The samples with a T2 value higher than the critical distance
at a significance level of 5% (p = 0.05) represent suspected
outliers, while the samples with a T2 higher than the critical dis-
tance at a significance level of 1% represent outliers.[14]

3. Software Tools
3.1. PythonTMlanguage

For the creation of the tool, Python programming language
was used. Python is an interpreted, interactive, object-oriented
programming language which incorporates modules, excep-
tions, and classes[16]. Scikit-learn was the Python module used
to apply machine-learning. It integrates a wide range of state-
of-the-art machine learning algorithms for supervised and un-
supervised problems[9].

3.2. gPROMS software R©

For the implementation of the models created in dynamic
simulations, the gPROMS R© platform was used, more specif-
ically, the gPROMS FormulatedProducts R© software, devel-
oped by Process Systems Enterprise (PSE). gPROMS For-
mulatedProducts is used for integrated digital design of ro-
bust formulated products and their respective manufacturing
processes[17]. The gPROMS platform allows the usage of exter-
nal software components - foreign object (FO) - which provide
a way of importing data. In the present work, a single FO was
used, the pyFO, of internal PSE development, responsible for
trading of information between the platform and Python [18].

3.2.1 Global system Analysis

gPROMS has the capability of performing uncertainty anal-
ysis with Monte Carlo methods on certain models trough the
global system analysis (GSA) tool. This tool was used for a
sensitivity analysis - the study of how the variance of the out-
puts of the model is dependent on the inputs factors affected by
uncertainty.[18]

3.3. SIMCA R© software
SIMCA is a statistical software used for multivariate data

analysis. It allows for the interpretation and visualisation of large
amounts of data, batch data and time-series data, among oth-
ers. By being able to analyse process variations, identify critical
parameters and predict final product quality, this software be-
comes suitable for data mining and process modelling. [19]

4. Granulation Case Study
Like with any other model, there is a need for the validation

of the PLS model and, in this case, for the validation of the
implemented statistical tests. With this purpose, a PLS model
was fitted to data from a granulation case study, which was pre-
viously ran trough the umetric’s SIMCA R© software, creating a
PLS model and applying the distance to model and Hotelling’s
T2 tests.

4.1. Process description
In the case study in question, data from a granulation pro-

cess was provided by AstraZeneca (AZ) as a part of the Ad-
vanced Digital Design of Pharmaceutical Therapeutics (AD-
DoPT) project. This project consists of a four year collabora-
tion between pharmaceutical companies, solution providers and
academia aiming to make existing and new digital design ap-
proaches widely usable within the pharmaceutical industry, in-
creasing efficiency and effectiveness of drug development and
manufacture.[20]

The flowsheet referring to the process where the training
data for the model was collected (Figure 1) was also provided
and assembled by AZ. In this dry granulation process, pow-
der particles are fed to a roller compactor where they are com-
pacted into a ribbon and subsequently milled. The process ends
with the compacting of the granules from the mill in the tablet
press. Linked to the output stream of the mill there is a particle
size distribution sensor (PSD sensor) that will obtain the results
of a particle size distribution for said stream, namely the cumu-
lative diameters (D10, D50, D90) and the volume weighted mean
(D43) , which will then act as inputs for the model. This is pos-
sible since the data based sensor block (Sensor data based),

4

a block that contains the developed model, was added to the
flowsheet. This block receives the cumulative and volume mean
diameters from the particle size distribution and calculates pre-
diction for the flow-function coefficient (FFC).

Figure 1: AZ’s process flowsheet.

4.2. Model Development and Validation
The above mentioned data refers to several particle size dis-

tributions and the parameters obtained from it, i.e the cumula-
tive diameters and the D43. The cumulative diameters amount
to the diameter at which a certain percentage of the particle
sample has a diameter lower or equal than said value. Both
the cumulative diameters and D43 are used as inputs for the
model, in order to calculate the FFC. This coefficient refers to a
function which is of importance in granulation, since it allows for
the calculation of the flow performance of the powder. All these
parameters were calculated for 19 different samples.

These parameters were loaded into SIMCA, which created a
PLS model with 3 components. This software also applies CV
to different sized models and chooses the one with the best CV
score. It should be noted that a logarithmic transformation was
applied to the output data in order to normalize it.[21]

The input data were inserted into Python and, with the help of
the scikit-learn package, a PLSR was applied, along with a 10-
fold CV in order to choose the optimal number of components.
A model with 3 components, a Q2 score of 0.649 and R2 score
of 0.801 was chosen due to its superior prediction capability
(higher Q2), which is in line with what was obtained in SIMCA.

To help visualise the behaviour of the different models during
CV, the plotting of a validation curve was implemented (Fig-
ure 2). This curve represents both the training and validation
scores obtained during CV for the different numbers of compo-
nents possible, that is, the scores for the training and test sets.
Since in CV 10 different scores are calculated, one for each
fold, the errors calculated will have a certain degree of uncer-
tainty. Because of this, a std band (calculated trough Equation
(27)) is shown alongside the curves, quantifying the degree of
uncertainty for each score.

std =

√∑N
i=1 (ypredicted − ymeasured)2

N
(27)

Figure 2: Validation curve for the granulation case.

Having obtained the same results as SIMCA, the tool’s ca-
pability of generating a PLS model with the optimal number
of components was validated. In order to visualize and better

judge the prediction capabilities of the model, there is the need
to look at the plot of the predicted values against the the out-
put training data (Figure 3). These values are analysed using
a y=x plot as reference (the closer the values are to this refer-
ence line, the better the predictions) along with a band, which
indicates the expected area where the predictions will land, ac-
cording to the std of the predictions in CV. Additionally, the plots
also display the values for the confidence intervals calculated for
confidence levels of 95% and 99%. These intervals correspond
to the range were the prediction are expected to land with 95%
or 99% or certainty.

Figure 3: Predicted Y vs. Observed Y plot with reference.

Trough the plot displayed, it can be seen that most of the
predictions land close to the reference plot within the std band.
This allow us to classify the quality of the predictions as being
good. Some deviations are shown, but they are not severe.

Due to the fact that there is only a small number of obser-
vations in the training set, there was the suspicion that the ob-
served deviations might have been caused by overfitting. To
asses this, a learning curve plot (Figure 4) was implemented.
For this plot, a model is fitted for different numbers of ob-
servations (training examples) and both the training score of
the model and the CV score are plotted alongside uncertainty
bands, similar to the ones in the validation curve.

Figure 4: Learning curve for the granulation case.

For a small number of training examples, the learning curve
shows a large separation between both the scores, indicating
that, for up to 8 examples in the training set, the training error
is low (there is a good fit to the training data) but the error for
the CV tests is high (low quality predictions during CV). This
facts paired together constitute overfitting. For higher numbers
of samples the errors converge and there is a relatively small
difference between both scores, indicating that the number of
samples used was appropriate and that there was no overffit-
ing. The high degree of uncertainty in the CV score indicates
that it is not possible to claim with total certainty that there is
no overfitting. However, having no more data available, it was
considered that there is no overfitting.

4.3. Statistical tests validation
An important step in judging the quality of the data set and,

therefore, the model’s, is outlier detection through statistical
tests. As such there is a need to validate the implemented func-
tions and cross reference their results with the ones obtained
from the SIMCA report.

5

4.3.1 Distance to the model

Naturally, the first statistical test applied is the DmodX, mea-
suring the distance of a sample point to the plane created by
the model. Both equations (17) and (18) were implemented, as
the tests are being applied to the training data.

Figure 5: Comparison plot between the DmodX results from
the implemented functions and the ones from SIMCA’s model.

A clear difference between the results and SIMCA’s report
can be noted in Figure 5. Upon using some of the training data
as a prediction set in SIMCA, the value for DmodX without a cor-
rection factor was obtained, presenting the same value as the
implemented function based on equation (17), what leads to the
conclusion that the deviation in results is caused by an error in
the correction factor. Consequently, an hypothesis was created
(equation (29)) that the correction factor was only dependent on
N and α (a parameter dependent on A).

ν =
N

N − α
(28)

This parameter was then calculated for the correction factors
obtained with the unchanged training data set, for a number
of components ranging from 1 to 3 and the obtained results
were fitted using a linear regression, having shown a high linear
relation as such:

α = 0.542 ·A+ 0.487, R2 = 0.999 (29)
Equation (29) was then promptly implemented, having shown

the desired results, displayed in Figure 6

Figure 6: Comparison plot between the DmodX results from
the implementation of the new ν and the ones from SIMCA’s
model.

Since α was obtained for a limited range of the number of
components parameter, there is the risk of having a high num-
ber of components where the correlation fails. With the valida-
tion of equation (29) for high values of A in mind, the first 118
non binary parameters of the dataset presented in reference
[22] were inserted into SIMCA and a a model with 118 compo-
nents was created. The model created was compared with the
one obtained in Python using the same data and the value ob-
tained for the correction factor showed a deviation of 0.0097%
from SIMCA’s. Therefore the hypothesis was considered cor-
rect and was applied in the subsequent case studies.

4.3.2 Hotelling’s T2

Regarding the Hotelling’s T2 the implemented function
yielded results that match the ones from SIMCA’s report (Fig-
ure 7) and, therefore, this test was considered validated. From

the results it was also concluded that the dataset used to fit the
model showed no outliers.

Figure 7: Comparison plot between results from the Hotelling’s
T2 implemented and the ones from SIMCA.

4.4. gPROMS Results
Having created the model, the next step was the implemen-

tation of the model in a dynamic simulation. The model’s im-
plementation is possible because the Python tool allows for the
creation of an XML file containing all the relevant information of
the model, which will be loaded into the gPROMS software (it is
linked to the data based sensor block), that will predict values
for the FFC over time. This pairing is only possible trough a FO
that allows for the trading of information between Python and
gPROMS.

The simulation ran for 1800 s, with the PSD sensor block reg-
istering different values for the particle size distribution. The val-
ues predicted for the FFC during the simulation are presented
in Figure 8.

0 500 1000 1500

2

3

4

5

Time (s)

P
re
d
ic
te
d
F
F
C

Figure 8: Predicted values for the FFC over time

As it can be seen, the model was able to make predictions
when included in a dynamic simulation. However, during the
simulation warnings were triggered. Hence, both the results of
the statistical tests and the values taken by the model’s inputs
must be analysed in order to asses what triggered the warn-
ing. Figure 9 shows that, even though DmodX not always took
a value over the critical distance, the Hotelling’s T2 consistently
had values over the critical bound throughout the entire simula-
tion.

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

Time (s)

D
is
ta
n
ce

to
th
e
m
o
d
el

DmodX

Critical Distance

(a) DmodX

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

Time (s)

H
o
te
ll
in
g’
s
T

2

Hotelling’s T2

Critical Distance

(b) Hotelling’s T2

Figure 9: Statistical tests for the predictions of the FFC.

By looking at the comparison plot, presented in Figure 10, it
becomes apparent why the statistical tests failed. By having the
input parameters assuming values higher than their maximum/
lower than their minimum values in the training data, it is as-
sured that the observation points will present higher distances
to the model plane/ its centre.

6

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

Time (s)

D
9
0

D90

Training bounds

Figure 10: Values of D90, µm, during the simulation and re-
spective training bounds.

The model was fitted with data within certain bounds, how-
ever, by exceeding those bounds, there isn’t a guarantee that
the quality of the predictions will uphold for the new input data.
This fact constitutes one of the main limitations of these type of
models: no matter how broad the range of the training data, the
quality of the predictions made with inputs outside that range
can never be assured. Therefore, even though the main goal of
soft-sensing the FFC was accomplished, the predictions cannot
be considered reliable.

5. Compression Case Study
Having the model creation/analysis tools validated, it was

now possible to fit a model to new data. Therefore a PLS model
was developed for a compression case study. In this case study,
with data provided by Pfizer as a part of the ADDoPT project,
a model was created for the prediction of the compressibility
of a blend, defined as the fraction of volume reduction under
pressure[23], from particle size distribution data. Analogously
to what happened in the previous case study, the output was
logarithmically transformed and predictions were made for this
transformation.

5.1. Process description
The flowsheet in Figure 11, provided and assembled by

Pfizer, represents the process where the training data for the
model was collected. In this process, a fenofibrate is crys-
tallized, milled and then mixed with an excipient. This blend
will go trough a particle size distribution (blend PSD block),
whose results will be inserted into the data based sensor (Sen-
sor data based), namely the cumulative diameters (D5, D10,
D16, D25, D50, D75, D84, D90 and D95), the Sauter mean diam-
eter (D32) and the D43 , in order to predict the compressibility
of the blend in the roller compactor - parameter that influences
the efficiency of this step of the process. The blend will then be
milled and tablets will be created due to the usage of a tablet
press.

Figure 11: Pfizer’s process flowsheet.

5.2. Model Development
This time, the data provided consisted only of the raw data

of the particle size distribution, having 100 different samples.
With the diameters of the sieves and their respective volume
fractions, the cumulative diameters D5, D10, D16, D25, D50, D75,
D84, D90 and D95, the D32 and the D43 were calculated. The
data was then loaded to Python and a model with 4 components
and a Q2 and R2 scores of 0.737 and 0.822, respectively, was
obtained.

By interpreting the validation curve (Figure 12) it becomes
apparent that there is a high degree of uncertainty prediction
wise. For the optimal number of components case, this indi-
cates that albeit the score was the lowest obtained, there is still
the possibility to obtain high prediction errors with this model.

Figure 12: Validation curve for the compression case study.

From the interpretation of Figure 13 it is clear that for high
compressibility values, the predictions are close to the refer-
ence plot and within the uncertainty band, presenting high qual-
ity. However, as the values of compressibility decrease, the de-
viations from the reference plot increase, with most points going
outside the uncertainty band, so much so that a point is reached
when the plotted points have non-negligible deviations from the
reference and the uncertainty band. Therefore, for the given
model, predictions made for lower values of compressibility are
not reliable.

Figure 13: Predicted Y vs. Observed Y plot for the compression
case study.

5.2.1 Polynomial Transformation

One possible cause for the bad quality of the predictions for
lower values of compressibility is the simplicity of the model. In
order to try and correct this issue, a 2nd order polynomial trans-
formation was applied to add complexity to the model. This
non-linear transformation adds as input the value 1 (which, in
this work, will always have a null coefficient) and the multiplica-
tion of each parameter by itself an by the remainder parameters.
By training the data on non-linear functions of the input data, it
is assured that the PLSR is able to fit to a wider range of data
while still generating a linear model. [9]

The transformed input data, now with 78 inputs, was fed to
the tool and the result was a model with 13 components, a Q2

score of 0.795 and a R2 score of 0.883. The slice of the val-
idation curve in Figure 15 shows that besides having a better
score, the model obtained also has a lower degree of uncer-
tainty associated.

Figure 14: Validation curve for compression case study with
polynomial transformation.

7

Figure 15 shows the new model was able to maintain a
good quality of prediction for higher values of compressibility
(although some loss in quality is registered), while being able to
get better predictions for lower values.

Figure 15: Predicted Y vs. Observed Y plot for the compression
case study with polynomial transformation.

The results shown in the aforementioned plot serve to show
that, by adding complexity to the training data, the polynomial
transformation added robustness to the model, since it is now
suitable for predicting values within the range of the compress-
ibility in the training data.

The detection of outliers leads to a critical analysis of the
data to try to determine if these observations are explained by
the process or not i.e. if the deviations were caused by certain
operational conditions. If that is the case, then the observa-
tions are not removed from the dataset, if not they are removed.
Since the data was provided by a third party, the existing knowl-
edge of the process is not enough to do the required analysis
and so it was assumed that the outlier points were explained by
the process.

5.3. gPROMS Simulation Results
The relevant information regarding the chosen model was

stored into an XML file, which was then loaded into gPROMS
with the aim of soft-sensing the compressibility of a blend. The
simulation ran for 18000 and predictions for the compression of
the blend in the Roller Compactor for each point in time were
made, as reported in Figure 16.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0,65

0,66

0,67

0,68

0,69

Time (s)

P
re
d
ic
te
d
C
om

p
re
ss
ib
il
it
y

Figure 16: Predicted values for the compressibility of the blend
in the Roller Compactor over time

The sensor was able to predict the value for the compres-
sion of the blend over time, not registering significant fluctua-
tions, however during the simulation a warning was triggered.
To asses the cause of this warning the statistical tests were
analysed.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
94

95

96

97

Time (s)

D
is
ta
n
ce

to
th
e
m
o
d
el

(a) DmodX (Critical Distance =
1.22)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

3580

3600

3620

Time (s)

H
ot
el
li
n
g
’s

T
2

(b) Hotelling’s T2 (Critical
Distance = 27.14)

Figure 17: Statistical tests for the predictions of the compres-
sion in the Roller Compactor.

From the results of the statistical tests (Figure 17) it becomes
evident that both tests present a distance well above their re-
spective critical distance. This is consequence of the fact that
some input parameters go well above the maximum and mini-
mum values established in the training data, as it can be seen
in Figure 18.

0 5000 10000 15000
0

1000

2000

3000

4000

Time (s)

D
9
5

D95

Training bounds

Figure 18: Values of D95, µm, during the simulation and re-
spective training bounds.

Even though the model was able to predict the compressibil-
ity of the blend in the roller compactor, it did so using param-
eters outside the range the model was intended to be used in
and, therefore, the predictions are considered unreliable.

6. Solid Oxide Fuel Cells Case Study
The case study discussed in this chapter had a different ob-

jective than the previous ones. Instead of having the goal of
creating a predictive model for soft-sensing, the main goal was
to asses how the tool would behave when creating a predictive
model using the PLS 2 algorithm i.e creating a model with mul-
tiple outputs. In this case, training data was obtained from a
GSA applied to the operational conditions of a solid oxide fuel
cell (SOFC) model from gPROMS AML-FC library, in order to fit
a model that could predict the power and voltage of the fuel cell,
the molar fractions of O2, N2 and H2O and the out temperature
of the cathode and the molar fractions of H2O, H2, CO and CO2
and the out temperature of the anode.

6.1. Model Development
The dataset used to create the model consisted of 10000

samples points of 10 input variables: the current density; the
air’s flow rate, temperature and pressure; the syngas’s CH4,
CO, H2 and H2O content and its flow rate and pressure. These
data points were directly loaded to the Python tool, without any
transformations, and a model with 10 components, a Q2 score
of 0.7726 and a R2 score of 0.7733 was obtained. Upon apply-
ing a 2nd order polynomial transformation, a dataset with 66
input variables was loaded into python and a model with 65
components, a Q2 score of 0.939 and a R2 score of 0.940 was
obtained.

From the plots of the predicted values against the observed
values (Figures 19 and 20) it can be seen that the model is in-
capable of making good predictions for both cases, even though
improvements can be seen after the polynomial transformation.
This plots will only be shown for the cathode molar fraction of
H2O and power because these parameters show the worst pre-
dictions.

(a) Cathode molar fraction of
H2O. (b) Power (kW).
Figure 19: Predicted Y vs. Observed Y plot for the SOFC case
study without transformations.

8

(a) Cathode molar fraction of
H2O. (b) Power (kW).
Figure 20: Predicted Y vs. Observed Y plot for the SOFC case
study with polynomial transformation.

6.1.1 Reciprocal Transformation

While looking at the plotting of the response variables against
the inputs, it was noted that some variables display a reciprocal
dependency i.e the outputs were obtained through the inverse
of the inputs(1

x
). This is clear in the plots from Figure 21.

(a) Anode molar fraction of
H2O Vs. Syngas flow rate
(mol/s).

(b) Cathode molar fraction
of H2O Vs. Air flow rate
(mol/s).

Figure 21: Variables with a clear dependency trough a recipro-
cal function.

Due to these observations, a reciprocal transformation was
applied to the dataset, prior to the polynomial transformation.
This transformation consists on adding the inverse of each input
variable to the dataset. Upon combining the referred transfor-
mation with the polynomial one, a model was fitted to a dataset
consisting of 231 inputs. The optimal case obtained consisted
of a predictive model with 95 components, a Q2 score of 0.990
and a R2 score of 0.994.

The plots of the predicted values against the observed ones
(Figure 22) show significant improvements from the previously
obtained models. The cathode molar fraction of H2O now
presents all points extremely close to the reference, which is a
direct consequence of adding the reciprocal transformation. Al-
beit the power shows a slight improvement, there are still some
points with a significant distance to the reference.

(a) Cathode molar fraction of
H2O. (b) Power (kW).

Figure 22: Predicted Y vs. Observed Y plot for the SOFC case
study with reciprocal and polynomial transformation.

The results obtained show that the tool was able do suc-
cessfully create a model for the prediction of multiple outputs.
However, they also show that, even though the inputs used are
known to influence the outputs, the dataset might not have the
required complexity for the creation of a good predictive model.

Since the data was obtained from a GSA, all points are con-
sidered to be explained by the model and, therefore, outlier de-
tection was not necessary.

7. Conclusions
This work aimed to develop a prototype tool, in Python, able

to create predictive models for the purpose of soft-sensing pa-
rameters in systems that are usually not modelled. This hap-
pens either because they are poorly understood and, therefore,
first principle models cannot be developed, or because they
present non-linear relations between different parameters that
make them extremely hard to model trough first principal mod-
els.

The literature review showed that the PLSR was the algo-
rithm best suited for the problems tackled in this work, in detri-
ment of the MLR, used for simpler multivariate cases.

The tool’s ability to create predictive PLS models was val-
idated against a model for a granulation case, generated by
SIMCA R©, a statistical software that allows for the creation of
PLS models, trough plant data. The validated model was sub-
sequently loaded into gPROMS FormulatedProducts R©, trough
an internally developed foreign object, being able to success-
fully soft-sense the intended parameter, the FFC. The simula-
tion’s results led to the conclusion that one of the most impor-
tant steps in creating a predictive model is to choose the training
data carefully. Even though the model was able to predict the
FFC, the simulation was made with operational conditions differ-
ent from those used to generate the training data. This leads to
the calculation of predictions outside the range the model was
intended to be used in, generating unreliable results. Hence,
when using this tool, the training data used to fit the model must
be generated in a range of operational conditions that cover the
ones used in the simulations, thus assuring the reliability of the
predictions.

Being that the problems tackled have unknown relations be-
tween its parameters, the training data loaded into the tool might
not always posses the required complexity to successfully cre-
ate a good PLSR model, as evidenced by the compression
case. Therefore, to widen the range of applicability of the tool,
a 2nd order polynomial transformation option was added. With
this option, it was possible to increase the complexity of the
training data through a commonly used transformation when-
ever the tool fails to get a good predictive model from the raw
input data. The need to apply a transformation is one of the
main limitations of this tool, since certain problems may require
the application of transformations that aren’t commonly used
and, therefore, are not implemented.

The decision that the tool required training data with higher
complexity was also shown in the SOFC case study. In this
case, even after applying the polynomial transformation, the tool
failed to get a proper predictive model. This was corrected by
adding the option to apply a reciprocal transformation, which
can be combined with the previously implemented polynomial
transformation, further increasing the tool’s applicability to dif-
ferent cases. Additionally, this case led to the conclusion that
the PLSR was able to successfully create a single predictive
model for several response variables.

7.1. Future Work
In what concerns the tool itself, it still has room for improve-

ment, specially regarding data transformations. As it is applied
to other cases, further transformations can be implemented, not
only to the predictor variables, but also to the response vari-
ables.

Regarding the models integration in dynamic simulations,
since it has been proved that it is able to soft-sense certain pa-
rameters, it can be integrated into the simulation itself. This
would be accomplished by using the calculated predictions as
inputs for other models.

References
[1] P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven Soft

Sensors in the process industry,” Computers and Chemi-
cal Engineering, vol. 33, no. 4, pp. 795–814, 2009.

[2] S. Zendehboudi, N. Rezaei, and A. Lohi, “Applications
of hybrid models in chemical, petroleum, and energy

9

systems: A systematic review,” Applied Energy, vol.
228, no. December 2017, pp. 2539–2566, 2018. [Online].
Available: https://doi.org/10.1016/j.apenergy.2018.06.051

[3] G. James, D. Witen, T. Hastie, and R. Tibshirani, An Intro-
duction to Statistical Learning with Applications in R, 2007,
vol. 64, no. 9-12.

[4] M. N. O. Sadiku, S. M. Musa, O. M. Musa, and R. G.
Perry, “Machine Learning in Chemical Industry,” Interna-
tional Journal of Advances In Scientific Research and En-
gineering (IJASRE), vol. 3, no. 10, pp. 12–15, 2017.

[5] Z. Ge, Z. Song, S. X. Ding, and B. Huang, “Data Mining
and Analytics in the Process Industry: The Role of Ma-
chine Learning,” IEEE Access, vol. 5, pp. 20 590–20 616,
2017.

[6] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Ma-
chine learning in manufacturing: advantages, challenges,
and applications,” Production & Manufacturing Research,
vol. 4, no. 1, pp. 23–45, 2016.

[7] R. D. Tobias, “An introduction to partial least squares
regression,” SAS Conference Proceedings: SAS Users
Group International 20 (SUGI 20), pp. 2–5, 1995.

[8] S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: A
basic tool of chemometrics,” Chemometrics and Intelligent
Laboratory Systems, vol. 58, no. 2, pp. 109–130, 2001.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn:
Machine Learning in Python,” Journal of Machine Learn-
ing Research, vol. 12, pp. 2825–2830, 2012.

[10] J. Wegelin, “A survey of Partial Least Squares (PLS) meth-
ods, with emphasis on the two-block case,” p. 371, 2000.

[11] T. Hasegawa, “Principal Component Regression and Par-
tial Least Squares Modeling,” 2006.

[12] V. Consonni, D. Ballabio, and R. Todeschini, “Evaluation of
model predictive ability by external validation techniques,”
Journal of Chemometrics, vol. 24, no. 3-4, pp. 194–201,
2010.

[13] S. Jun, “Linear model selection by cross-validation,” Jour-
nal of the American Statistical Association, vol. 128, no. 1,
pp. 231–240, 1993.

[14] S. stedim Biotech, “Simca R© 15 User Guide - Multivariate
Data Analysis Solution.”

[15] G. K. Sofer and A. S. Rathore, Process Validation in Man-
ufacturing of Biopharmaceuticals, 3rd ed.

[16] Python Software Foundation, “PythonTM,” accessed 2018-
08-14. [Online]. Available: https://www.python.org/

[17] Process Systems Enterprise Ltd., “PSE: gPROMS -
The Platform,” accessed 2018-06-12. [Online]. Available:
https://www.psenterprise.com/products/gproms/platform

[18] Process Systems Enterprise, “gPROMS ModelBuilder
Documentation - Release 4.2.1,” Tech. Rep., 2016.

[19] “SIMCA — Umetrics,” accessed 2018-08-15. [Online].
Available: https://umetrics.com/products/simca

[20] “ADDoPT – advanced digital design transform-
ing pharmaceutical development and manufac-
ture,” accessed 2018-07-09. [Online]. Available:
https://www.addopt.org/about addopt/

[21] C. Feng, H. Wang, N. Lu, T. Chen, H. He, Y. Lu, and X. M.
Tu, “Log-transformation and its implications for data anal-
ysis.” Shanghai archives of psychiatry, vol. 26, no. 2, pp.
105–9, 2014.

[22] University of California Irvine, “BlogFeedback Data
Set,” 2014, accessed 2018-08-08. [Online]. Available:
http://archive.ics.uci.edu/ml/datasets/BlogFeedback

[23] A. Michrafy, D. Ringenbacher, and P. Tchoreloff, “Mod-
elling the compaction behaviour of powders: Application
to pharmaceutical powders,” Powder Technology, vol. 127,
no. 3, pp. 257–266, 2002.

10

